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Abstract In the present paper,we consider an approx-
imate approach for predicting the responses of the
quasi-integrable Hamiltonian system with multi-time-
delayed feedback control under combined Gaussian
and Poisson white noise excitations. Two-step approx-
imation is taken here to obtain the responses of such
system. First, based on the property of the system
solution, the time-delayed system state variables are
approximated by using the system state variables with-
out time delay. After this approximation, the system is
converted to the one without time delay but with delay
time as parameters. Then, stochastic averaging method
for quasi-integrable Hamiltonian system under com-
bined Gaussian and Poisson white noises is applied to
simplify the converted system to obtain the averaged
stochastic integro-differential equations and general-
ized Fokker–Planck–Kolmogorov equations for both
non-resonant and resonant cases. Finally, two exam-
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ples are worked out to show the detailed procedure of
proposed method for the illustrative purpose. And the
influences of the time delay on the responses of the
systems are also discussed. In addition, the validity of
the results obtained by present method is verified by
Monte Carlo simulation.
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1 Introduction

In the last few decades, the dynamic and control prob-
lems for time-delayed systems have attracted many
researchers’ attention, and many results have been
obtained [1,2]. It is shown that the time delay in the
system usually leads to poor performance and com-
plicated dynamics in control systems and even causes
the occurrence of some dynamical phenomena, such as
bifurcation and chaos [3].

Among the time-delayed systems, the systems with
time delay in feedback control force are an important
category. In practice, this time delay may be caused
by measuring and estimating the system state, calcu-
lating and executing the control forces, etc. In past
few decades, the system with time delay subjected to
deterministic excitations have been studied extensively.
Many results can be found in Refs. [4–10]. However,
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since the existence of disturbance in the environment,
the stochastic excitation should be accounted in the sys-
tem. To improve the deterministicmodel, the stochastic
excitations are added to the time-delayed feedback con-
trol systems. So far, for the case of controlled system
under stochastic excitation, the results mainly focus on
the dynamics andoptimal control problemof controlled
system under Gaussian white noise excitation [11–15].
In particular, in last decade, Zhu et al. have generalized
the stochastic averagingmethod to study of the systems
with time-delayed feedback control under stochastic
excitation. The stochastic response, stochastic stabil-
ity, stochastic reliability, and optimal control problem
for nonlinear system with different type of stochastic
excitation have been studied by using stochastic aver-
aging method [16–20].

In the previous studies, the stochastic excitation is
usually assumed to be stochastic continuous excita-
tion, such as Gaussian white noise. But, in real word,
the stochastic excitations are not always continuous.
In society, engineering problem, we usually face con-
tinuous and discrete stochastic excitation. This type of
stochastic excitation is usually modeled as the jump-
diffusion process or combined Gaussian and Poisson
white noise excitation. Until now, there are a number
of researchers working in this area. The stochastic cal-
culus, stochastic differential equations, and the stochas-
tic optimal control problem have been stated system-
atically in mathematics by Hanson [21] and Øksendal
[22]. Zhu et al. have studied the stochastic response and
the stochastic stability of the quasi-Hamiltonian sys-
tem under combined Gaussian white noise and Poisson
white noise excitation in terms of stochastic averaging
method [23–26]. However, to the authors’ knowledge,
the stochastic dynamics of system with time-delayed
feedback control have not been studied. In particular,
the prediction of response such system is still a prob-
lem.

In the present paper, we study a tool for predicting
the response of quasi-integrable Hamiltonian system
with multi-time-delayed feedback control under com-
bined Gaussian and Poisson white noise excitation. We
use two-step approximation to get the approximation
stationary solution. First, by approximating the system
state variables in terms of those without time delay,
the feedback control force can be expressed by using
the state variables without time delay. At this time, the
system with time-delayed variable is transformed to
the one without time-delayed system variables but with

time delay as parameters. Then, the stochastic averag-
ing method for quasi-Hamiltonian system under com-
bined Gaussian and Poisson white noise excitation can
be applied to the converted system.The averagedgener-
alized Fokker–Planck–Kolmogorov (GFPK) equations
for both cases, the resonant and non-resonant case, are
obtained separately. After solving the averaged GFPK
equation, the probability density functions (PDFs) for
approximate stationary solution are derived. At last,
two examples are calculated for illustrating the applica-
tion of the proposed method. The Monte Carlo simula-
tion is carried out to show the effectiveness of proposed
method.

2 Quasi-integrable Hamiltonian systems with
time-delayed feedback control forces

Consider ann-degree-of-freedom(n-DOF)quasi-Ham-
iltonian systemwith multi-time-delayed feedback con-
trols under combinedGaussian andPoissonwhite noise
excitations. The equations of motion of system have
following form:

Q̇i =
∂H ′

∂Pi
,

Ṗi = −∂H ′

∂Qi
− ε2

n∑

j=1

ci j (Q, P)
∂H ′

∂Pj

− ε2Fi
(
Qτ1 , Pτ1 , . . . , Qτs , Pτs

)

+ ε

ng∑

k=1

gik (Q, P)ζk (t)

+ ε

n p∑

l=1

hil (Q, P)ξl (t) , (1)

where Q = [Q1, Q2, . . . , Qn]T is a vector of gen-
eralized displacements and P = [P1, P2, . . . , Pn]T is
a vector of generalized momenta; ci j (Q, P) denote
differentiable functions representing coefficients of
quasi linear dampings; ε2Fi

(
Qτ1 , Pτ1 , . . . , Qτs , Pτs

)

with Qτr = Q (t − τr ) and Pτr = P (t − τr ) repre-
sent multi-time-delayed feedback controls;gik (Q, P)

are twice differentiable functions representing ampli-
tudes of Gaussian random excitations; hil (Q, P) are
infinitely differentiable functions representing ampli-
tudes of Poisson random excitations; ε is a small posi-
tive parameter; ζk (t) are Gaussian white noises with
zero mean and correlations functions E[ζk(t)ζl (t +
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τ )] = 2Dklδ(τ )(k, l = 1, . . . , ng); ξl (t) are indepen-
dent Poisson white noises [27] with zero mean and
the formal derivatives of compound Poisson processes
Cl (t) =

∑Nl (t)
k=1 YlkU (t − tk), l = 1, . . . , n p, where

Nl (t) are homogeneous Poisson counting processes
with mean arrival rate λl > 0; U (·) is the unit step
function; {Ylk} are independent identically distributed
random variables representing the impulse amplitudes,
which are independent of the pulse occurring time tk .

It is known that the Hamiltonian associated with
Eq. (1) (for the case ε = 0) can be non-integrable,
integrable, and partially integrable [28]. In the present
paper, we assume the associatedHamiltonian systemof
system (1) is integrable. It means that, there exit n inde-
pendent integrals of motion H1, H2, . . . , Hn which are
in involution in the associated Hamiltonian system.

For the integrable Hamiltonian system, the action-
angle variables Ii and θi can be introduced by using the
following canonical transformations [29]:

Ii = Ii (q, p) , θi = θi (q, p) , i = 1, 2, . . . , n

Then, the Hamiltonian system can be rewritten as fol-
lowing canonical form:

İi = − ∂

∂θi
H (I) = 0, θ̇i =

∂

∂ Ii
H (I) = ωi (I) ,

whereωi (I) are the frequencies of the system. An inte-
grable Hamiltonian system is called resonant or non-
resonant depending upon the number of the strong res-
onant relations of form

kui ωi = 0, u = 1, 2, . . . , α; i = 1, 2, . . . , n,

among the frequencies ωi (I), where kui are integers
and not all zero for a fixed u and α is the number of
resonant relationships. If there is no resonant relation,
the system is called non-resonant. If there are n − 1
resonant relations, namely α = n − 1, the system is
called completely resonant. If the number of resonant
relation is between 1 and n−1, namely 1 ≤ α < n−1,
the system is called partially resonant.

This system can be modeled as the as Stratonovich
stochastic differential equations (SDEs) and then trans-
formed into Itô SDEs by adding the correction terms
for both Gaussian and Poisson white noise excitation
[23,24]:

dQi =
∂H ′

∂Pi
dt,

dPi =

⎡

⎣−∂H ′

∂Qi
− ε2

n∑

j=1

ci j (Q, P)
∂H ′

∂Pj

+ ε2
ng∑

k,l=1

n∑

j=1

Dklg jl (Q, P)
∂gik
∂Pj

− ε2Fi
(
Qτ1 , Pτ1 , . . . , Qτs , Pτs

)
⎤

⎦ dt

+ ε

ng∑

k=1

σik (Q, P) dBk (t)

+

n p∑

l=1

⎛

⎝
∞∑

j=1

ε j

j!
h( j)
il (Q, P) (dCl (t))

j

⎞

⎠, (2)

whereh( j)
il (Q, P) =

∑n
s=1

∂h( j−1)
il (Q,P)

∂Ps
hsl , h

(1)
il (Q, P) =

hil (Q, P) , σik = (gL)ik, g =
[
g jl

]
n×ng

, LLT = 2D.

The
∑n p

l=1

∑∞
j=2

ε j

j! h
( j)
il (Q, P) (dCl (t)) j are the cor-

rection terms for Poisson white noise excitations in
transforming from Stratonovich SDEs into Itô SDEs
proposed byDi Paola [30]. The ε2

∑ng
k,l=1

∑n
j=1 Dklg jl

∂gik
∂Pj

are the Wong–Zakai correction terms for Gaus-
sian white noise excitations in transforming from
Stratonovich SDEs into Itô SDEs [31].

In the following parts, we consider two-step approx-
imation approach to derive the solution of the system.

3 First step approximate

Further, when the Hamiltonian associated with system
(1) is assumed to separable and has the following form
[28]:

H ′ =
n∑

i=1

H ′
i (qi , pi ), H ′

i =
1

2
p2i + G (qi )

The time-delayed system state variables can be approx-
imated by [16]:

Qi (t − τr ) = Qi (t) cos (ωiτr ) − Pi (t)

ωi
sin (ωiτr )

Pi (t − τr )= Pi (t) cos (ωiτr )+Qi (t) sin (ωiτr ) (3)

SubstitutingEq. (3) toEq. (2), the force Fi
(
Qτ1 ,Pτ1 , . . .,

Qτs , Pτs

)
can be written as Fi (Q, P; τ ) (τ = [τ1, . . . ,

τs]). Then, ε2
∑ng

k,l=1

∑n
j=1 Dklg jl (Q, P)

∂gik
∂Pj

− ε2Fi
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(Q, P; τ ) can be split into conservative part and dis-
sipated part [16]. These two parts can be combined
with − ∂H ′

∂Pi
and −ε2

∑n
j=1 ci j (Q, P) ∂H ′

∂Pj
, respectively.

Equation(2) becomes following SIDE

dQi =
∂H

∂Pi
dt,

dPi = −
⎡

⎣ ∂H

∂Qi
+ ε2

n∑

j=1

mi j (Q, P; τ )
∂H

∂Pj

⎤

⎦ dt

+ ε

ng∑

k=1

σik (Q, P) dBk (t)

+

n p∑

l=1

∫

Ql

γil (Q, P,Yl)Pl (dt, dYl), (4)

i = 1, 2, . . . , n;

where γil (Q, P,Yl) =
∑∞

j=1
ε j

j! h
( j)
il (Q, P)Y j

l , H =
H (Q, P, τ ) andPl (dt, dYl) arePoisson randommea-
sures and Ql denote the Poisson mark spaces. Sup-
pose that system (4) is still integrable. And this system
is a quasi-integrable Hamiltonian system with param-
eter τ but without time-delayed control force. Now,
the stochastic averaging method for quasi-integrable
Hamiltonian systems under combined Poisson and
Gaussian white noise can be applied to system (4).

4 Second-step approximation: the stochastic
averaging procedure

The stochastic averaging method for quasi-integrable
Hamiltonian systems under combined Gaussian and
Poisson white noise has been developed by the present
authors [23,24]. The dimension and form of averaged
equations depend upon the integrability and resonance
of associated Hamiltonian system. Thus, in the follow-
ing parts, the problemwill be discussed in non-resonant
case and resonant case.

4.1 Non-resonant case

In this case, after introducing the canonical transfor-
mations of action-angle variables:

Ir = Ir (Q, P), �r = �r (Q, P), r = 1, 2, . . . , n,

(5)

Then, the averaged GFPK equation is of the form [23]

∂p

∂t
= −

n∑

r1=1

∂

∂ Ir1

(
Ār1 (I)p

)
+

1

2!

n∑

r1,r2

∂2

∂ Ir1∂ Ir2

(
Ār1,r2 (I)p

)

− 1

3!

n∑

r1,r2,r3=1

∂3

∂ Ir1∂ Ir2∂ Ir3

(
Ār1,r2,r3 (I)p

)

+ · · · + (−1)u
1

u!

n∑

r1,r2,...,ru=1

∂u

∂ Ir1∂ Ir2 · · · ∂ Iru
(
Ār1,r2,...,ru (I)p

)
+ O

(
εu+1

)
, (6)

inwhich Āri (I) , Āri ,r j (I) , Āri ,r j ,rk (I) · · · are the coef-
ficients of the averaged GFPK equation which have
been given in “Appendix A”.

In Eq. (6), p = p(I, t |I0), the transition probability
density of I = [I1, I2, . . . , In]T with initial condition

p (I, 0|I0) = δ (I − I0) , (7)

or, p = p (I, t), the probability density of I with initial
condition

p(I, 0) = p (I0) , (8)

depending on whether an initial state or an initial prob-
ability density is specified. For stationary situation, the
GFPK equation (6) is usually subjected to following
boundary conditions:

p(I)|Ir=0 = finite, lim
Ir→∞ p (I)=0, lim

Ir→∞
∂k

∂ I kr
p (I)=0,

(9)

r = 1, 2, . . . , n; k = 1, 2, . . . .

And it is also subjected to the normalization condition
∫ ∞

0

∫ ∞

0
· · ·

∫ ∞

0
p (I)dI1dI2 · · · dIn = 1. (10)

The exact analytical solution of reduced GFPK equa-
tion is very hard to obtain. Usually, the perturbation
method or finite difference method are used to get the
approximate stationary solution p (I) for the system.
Then, the corresponding joint probability density of
the generalized displacements and momenta can be
obtained from p (I) as follow [29]:

p (q, p) = p (I,�)

∣∣∣∣
∂ (I,�)

∂ (q, p)

∣∣∣∣ = p (� |I )

p (I)

∣∣∣∣
∂ (I,�)

∂ (q, p)

∣∣∣∣ =
1

(2π)n
p (I) , (11)

where |∂ (I,�)/∂ (q, p)| is the absolute value of the
Jacobian determinant of the canonical transformations
from q, p to I,�.
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4.2 Resonant case

In this case, suppose that the integrable Hamiltonian
system associated with Eq. (4) is weakly resonant with
the following α (1 ≤ α ≤ n − 1) resonant relations

kv
r ωr = O

(
ε2

)
, v = 1, 2, . . . , α; r = 1, 2, . . . , n.

(12)

By introducing the following combinations�v of angle
variables

�v = kv
r �r , v = 1, 2, . . . , α; r = 1, 2, . . . , n. (13)

The following averaged GFPK equation [24] can be
obtained:
∂

∂t
p = −

n∑

r1=1

∂

∂ Ir1

(
Ār1 (I,ψ) p

)

−
α∑

v1=1

∂

∂ψv1

(
Ān+v1 (I,ψ) p

)

+
1

2

n∑

r1,r2=1

∂2

∂ Ir1∂ Ir2

(
Ār1,r2 (I,ψ) p

)

+
C1
2

2

α∑

v1=1

n∑

r1=1

∂2

∂ Ir1∂ψv1

(
Ār1,n+v1 (I,ψ) p

)

+
1

2

α∑

v1,v2=1

∂2

∂ψv1∂ψv2

(
Ān+v1,n+v2 (I,ψ) p

)
+· · ·

+
u∑

j=3

(−1) j
j∑

s=0

α∑

v1,v2,...,vs=1

n∑

r1,r2,...,r j−s=1

Cs
j

j!

∂ j

∂ Ir1 · · · ∂ Ir j−s∂ψv1 · · · ∂ψvs

(
Ār1,...,r j−s ,n+v1,...,n+vs (I,ψ) p

)
+O

(
εu+1

)

(14)

where Cs
j = j!

s!(m−s)! and Ār1 (I,ψ) , Ān+v1 (I,ψ) ,

Ār1,r2 (I,ψ) , Ār1,n+v1 (I,ψ) · · · are the coefficients of
the GFPK equation. And the detailed forms of the coef-
ficients are given in “Appendix B”.

In Eq. (14), p = p
(
I,ψ, t

∣∣I0,ψ0
)
denotes the

transition probability density of [I,ψ]T =
[I1, . . . , In, ψ1, . . . , ψα]T with following initial con-
ditions:

p
(
I,ψ, 0

∣∣I0,ψ0
)
= δ (I − I0) δ

(
ψ − ψ0

)
(15)

or p = p (I,ψ, t) denotes the probability density of
[I,ψ]T with initial condition

p (I,ψ, 0) = p
(
I,ψ0

)
(16)

The averaged GFPK equation (14) is also subjected to
certain boundary conditions.

Considering the stationary situation, p = p (I,ψ) in
Eq. (14) is the stationary joint probability density . The
boundary condition with respect to I is

p = finite p → 0 and
∂k

∂ I kr
p → 0 as Ir → ∞

(17)

r = 1, . . . , n; k = 1, 2, . . .

Since p (I,ψ) is a periodic function of ψ, it satisfies
the following periodic boundary condition with respect
to ψv:

p|ψv+2nπ= p|ψv and
∂k

∂ψk
v

p

∣∣∣∣ψv+2nπ =
∂k

∂ψk
v

p

∣∣∣∣
ψv

(18)

In addition, the following normalization condition is
also satisfied∫ ∞

0
· · ·

∫ ∞

0

∫ 2π

0
· · ·

∫ 2π

0
p (I,ψ)dψ1 · · ·

dψαdI1 · · · dIn = 1 (19)

Equation (17) implies that Ir are reflecting bound-
ary. Usually, the same techniques for non-resonant are
applied here to get the approximated solution of the
averaged reduced GFPK Eq. (14). Then, the stationary
solution of averaged GPFK equation in terms of q and
p can be given as [29]

p (q, p) = p (I,ψ, θ1)

∣∣∣∣
∂ (I,ψ, θ1)

∂ (q, p)

∣∣∣∣

= p (θ1|I,ψ) p (I,ψ)

∣∣∣∣
∂ (I,ψ, θ1)

∂ (q, p)

∣∣∣∣

=
1

(2π)n−α
p (I,ψ)

∣∣∣∣
∂ (I,ψ, θ1)

∂ (q, p)

∣∣∣∣ (20)

where|∂ (I,ψ, θ1)/∂ (q, p)| is the absolute value of the
Jacobian determinant for the transformations from q, p
to I,ψ, θ1.

5 Two examples

5.1 Example 1

Consider a van der Pol oscillator with two time-delayed
feedback control subject to Poisson white noise exci-
tations. The equation of motion is

Ẍ + ω′2X − ε2
(
1 − X2

)
Ẋ = −ε2

(
a1Xτ1 + a2 Ẋτ2

)

+ εξ (t) (21)
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where Xτ1 = X (t − τ1) and Ẋτ2 = Ẋ (t − τ2) are sys-
tem variables with time delay; ε2a1 and ε2a2 are feed-
back control gains; τ1 and τ2 are two delay times; ξ (t)
is a combined Gaussian white noise and Poisson white
noise; ε is a small parameter.

Let X = Q and Ẋ = P (Xτ1 = Qτ1 and Ẋτ2 = Pτ2 ).
Thus, system (21) can be written as

Q̇ = P

Ṗ = −ω
′2Q + ε2

(
1 − Q2

)
P − ε2

(
a1Qτ1 + a2Pτ2

)

+ εξ (t) (22)

As state in the Sect. 3, the time-delayed system state
variables can be replaced approximately by using the
system state variables without time delay as following
forms:

Qτ1 = Q cos
(
ω′τ1

) − 1

ω′ P sin
(
ω′τ1

)

Pτ2 = Qω′ sin
(
ω′τ2

)
+ P cos

(
ω′τ2

)
(23)

Substituting Eq. (23) to Eq. (22), the following equa-
tions can be derived:

Q̇ = P

Ṗ = −ω2 (τ1, τ2) Q + ε2
[
c (τ1, τ2) − Q2

]

P + εξ (t) (24)

In which

ω = ω (τ1, τ2)=
√

ω′2+ε2 (a1 cos (ω′τ1) + a2 sin (ω′τ2))

c = c (τ1, τ2) = 1 −
(
a2 cos

(
ω′τ2

) − a1
ω′ sin

(
ω′τ1

))

Thus, themodifiedHamiltonian system associatedwith
Eq. (24) is

H = ωI =
p2 + ω2q2

2
,

By using the approximate procedure stated in Sects. 3
and 5 and ignoring the terms higher than ε4, the follow-
ing reduced averaged GFPK equation can be obtained:

0 = − ∂

∂ I

(
Ā1 (I ) p

)
+
1

2

∂2

∂ I 2
(
Ā2 (I ) p

)

− 1

3!

∂3

∂ I 3
(
Ā3 (I ) p

)
+

1

4!

∂4

∂ I 4
(
Ā4 (I ) p

)
(25)

where

Ā1 (I ) = − ε2

2ω
I 2 + ε2c (τ1, τ2) I + ε2

2D + λE
[
Y 2

]

2ω

Ā2 (I ) = ε2
2D + λE

[
Y 2

]

ω
I + ε4

λE
[
Y 4

]

4ω2 (26)

Ā3 (I ) = ε4
3

2

λE
[
Y 4

]

ω2 I ; Ā4 (I ) = ε4
3

2

λE
[
Y 4

]

ω4 I 2

where p = p (I ).
This reduced averaging GFPK equation (25) can be

solved by perturbation method. First, the solution is
assumed as following form:

p = p0 + εp1 + ε2 p2 + · · · (27)

in which p0 = p0 (I ) , p1 = p1 (I ) , p2 = p2 (I ).
The details of perturbation procedure can be found in
“Appendix C”.

Further, the stationary probability density of dis-
placement and velocity of original system (21) is

p (q, p) =
1

2π
p (I )|

I= (p2+ω2q2)
2ω

(28)

where q = x, p = ẋ . The marginal stationary probabil-
ity density and moments can be derived from p (q, p).

To see accuracy of the theoretical method, the sta-
tionary probability density for the response is calcu-
lated with system parameters: ε = 0.1, ω′ = 1.2, α =
1.0, β = 1.0, a1 = −3.0, a2 = 3.0, τ1 = 1.0, τ2 =
3.0, σ 2 = 1.0, λ = 1.0, E[Y 2] = 1.0. In Fig. 1a, the sta-
tionary response of displacement is given, and Fig. 1b
shows the stationary probability density of the velocity.
In these figures, the solid lines denote the theoretical
results and the discrete lines denote the Monte Carlo
simulation. It can be seen that the analytical results
agree well with those from Monte Carlo simulation.

Figures 2 and 3 show the influences of displace-
ment feedback controls and the velocity feedback con-
trol on the stationary probability density, respectively.
For these two cases, the value of parameters a1 or a2
are assumed to be 0, successfully. In these figures, the
results obtained by using the proposed stochastic aver-
aging method agree well with those with Monte Carlo
simulation. It is seen in Fig. 2a, b that when the value
τ1 changes from 1 to 5, the number of peaks of PDF
changes from 1 to 2 (see Fig. 1). If we continue to
increase the value of τ1 from 5 to 7, the number of
peaks of PDF changes from 2 to 1. The same phe-
nomena can be observed from Fig. 3a, b. This implies
that time-delayed feedback control forcemay cause the
phenomenological bifurcation.

5.2 Example 2

Consider two nonlinear damping oscillators coupled
by linear dampings and subject to both external exci-
tation of combined Gaussian and Poisson white noises
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Fig. 1 The marginal probability density function for the displacement and velocity
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Fig. 2 Stationary marginal probability density of system (21) with displacement feedback. The parameters are: ω′ = 1.0, ε = 0.1, a1 =
1.0, a2 = 0.0, τ2 = 1.0, λ = 0.3, E[Y 2] = 1.0, σ 2 = 0.2

and 2-time-delayed feedback controls. The equations
of motion of the system are of the form:

Ẍ1 + ε2(α′
11 + α12 Ẋ

2
1)Ẋ1 + ε2β1 Ẋ2 + ω′2

1X1

= u1 + ε (ζ1(t) + ξ1(t)) ,

Ẍ2 + ε2(α′
21 + α22 Ẋ

2
2)Ẋ2 + ε2β2 Ẋ1 + ω′2

2X2

= u2 + ε (ζ2(t) + ξ2(t)) , (29)

where ω′
i , α′

i i , αi j , βi (i, j = 1, 2) are constants; ε

is small parameter; ui = −ε2
(
ηi1Xiτ1 + ηi2 Ẋiτ2

)
= −

ε2
(
ηi1Xi (t − τ1) + ηi2 Ẋi (t − τ2)

)
; ζi (t) (i = 1, 2)

are two independent Gaussian white noises with small
intensities 2Dii (i = 1, 2); ξi (i = 1, 2) are two inde-

pendent Poisson white noises with zero mean and with
Gaussian distribution of impulse strength λi E[Y 2

i ].
Also,Gaussianwhite noises are independent of Poisson
white noises.

Let Qi = Xi , Pi = Ẋi . The time-delayed system
state variables can be approximated in terms of those
without time delay as

Qiτ1 = Qi cosω′
iτ1 − Pi

ω′
i
sinω′

iτ1

Piτ2 = Pi cosω′
iτ2 + Qiω

′
i sinω′

iτ2 i = 1, 2

(30)
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Fig. 3 Stationary marginal probability density of system (21) with velocity feedback. The parameters are: ω′ = 1.0, ε = 0.1, a1 =
0.0, a2 = 1.0, τ1 = 1.0, λ = 0.3, E[Y 2] = 1.0, σ 2 = 0.2

Thus, the modified system can be expressed as

dQ1 = P1dt,

dP1 = −
[
ω2
1Q1 + ε2

(
α11 + α12P

2
1

)
P1 + ε2β1P2

]
dt

+ε

(√
2D11dB1(t) +

∫

Q1

Y1 P1(dt, dY1)

)
,

dQ2 = P2dt,

dP2 = −
[
ω2
2Q2 + ε2

(
α21 + α22P

2
2

)
P2 + ε2β2P1

]
dt

+ε

(√
2D22dB2(t) +

∫

Q2

Y2P2(dt, dY2)

)
, (31)

where ω2
i = ω′2

i + ε2
(
ηi1 cosω′

iτ1 + ηi2ω
′
i sinω′

iτ2
)
.

And the damping coefficients α′
i1 become αi1 = α′

i1 +
ηi2 cosω′

iτ2 − ηi1
ω′

i
sinω′

iτ1. The Hamiltonian associ-
ated with the modified system (31) is:

H =
2∑

i=1

ωi Ii , (32)

where

Ii =
1

2ωi
(p2i + ω2

i q
2
i ), i = 1, 2. (33)

And the corresponding angle variables are

�i = − arctan

(
pi

ωi qi

)
, i = 1, 2. (34)

The system (31) is a quasi-integrable Hamiltonian sys-
tem. Thus, in the following part, we will discuss the
response of the system in non-resonant and resonant
case.

In non-resonant case, where rω1 + sω2 � = 0, r, s
are integers, neglecting the terms of higher order than
fourth order, the averaged GFPK equation is
∂

∂t
p = − ∂

∂ I1
( Ā1 (I1, I2) p) − ∂

∂ I2
( Ā2 (I1, I2) p)

+
1

2!

∂2

∂ I 21
( Ā1,1 (I1, I2) p)

+
1

2!

∂2

∂ I 22
( Ā2,2 (I1, I2) p)

− 1

3!

∂3

∂ I 31
( Ā1,1,1 (I1, I2) p)

− 1

3!

∂3

∂ I 32
( Ā2,2,2 (I1, I2) p)

+
1

4!

∂4

∂ I 41
( Ā1,1,1,1 (I1, I2) p)

+
1

4!

∂4

∂ I 42
( Ā2,2,2,2 (I1, I2) p). (35)

where p = p (I1, I2) and the coefficients of the aver-
aged GFPK equation are

Ā1 (I1, I2) = −ε2α11 I1 − 3

2
ε2α12ω1 I

2
1

+
ε2

2ω1

(
2D11 + λ1E[Y

2
1 ]

)
,

Ā2 (I1, I2) = −ε2α21 I2 − 3

2
ε2α22ω2 I

2
2

+
ε2

2ω2

(
2D22 + λ2E[Y

2
2 ]

)
, (36)
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Fig. 4 Stationary marginal probability densities with both displacement and velocity feedback control in non-resonant case

Ā1,1 (I1, I2) =
ε2

ω1

(
2D11 + λ1E[Y

2
1 ]

)
I1

+
ε4

4ω2
1

λ1E[Y
4
1 ], Ā2,2 (I1, I2)

=
ε2

ω2

(
2D22 + λ2E[Y

2
2 ]

)
I2

+
ε4

4ω2
2

λ2E[Y
4
2 ];

otherwise : Ār1,r2 (I1, I2) = 0, (37)

Ā1,1,1 (I1, I2) =
3ε4

2ω2
1

λ1E[Y
4
1 ]I1, Ā2,2,2 (I1, I2)

=
3ε4

2ω2
2

λ2E[Y
4
2 ]I2, otherwise : Ār1,r2,r3 (I1, I2)=0,

(38)

Ā1,1,1,1 (I1, I2) =
3ε4

2ω2
1

λ1E[Y
4
1 ]I

2
1 , Ā2,2,2,2 (I1, I2)

=
3ε4

2ω2
2

λ2E[Y
4
2 ]I

2
2 , otherwise : Ār1,r2,r3,r4 (I1, I2)

= 0. (39)

The averaged GFPK equation (35) can be solved
by using the perturbation method. After getting the
approximate stationary solution p(I1, I2), the approxi-
mate stationary probability density of the displacement
and velocities of original system (29) is then obtained

p(q1, p1, q2, p2) =
1

4π2 p(I1, I2)|Ii=(p2i +ω2
i q

2
i )/(2ω

2
i )

.

(40)

where q1 = x1, p1 = ẋ1, q2 = x2, p2 = ẋ2. The
marginal stationary probability density and moments
can be obtained from p(q1, p1, q2, p2).

In order to see the accuracy of proposed method, the
responses of system are calculated for the parameter
ε = 0.1, ω′

1 = 1.0, ω′
2 = 1.414, α′

11 = −6.0, α12 =
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Fig. 5 Stationary joint probability densities p (q1, p1) and
p (q2, p2) of system with both displacement and velocity feed-
back control in non-resonant case. a, c Analytical results and b,

d are results from the Monte Carlo simulation. The parameters
are the same as those in Fig. 4.

1.0, α′
21 = −6.0, α22 = 1.0, β1 = 1.0, β2 = 1.0, η11 =

−4.0, η12 = 4.0, η21 = −4.0, η22 = 4.0, τ1 = 1.0, τ2 =
2.0, 2D11 = 1.0, λ1 = 0.4, E[Y 2

1 ] = 2.5, 2D22 =
1.0, λ2 = 0.4, E[Y 2

2 ] = 2.5. The stationary marginal
probability density functions for displacements qi and
the velocity pi are given in Fig. 4. In this figure, the
discrete point lines denote the Monte Carlo simulation
and the solid lines denote the analytical solutions. Also,
the joint probability density functions for displacement
and velocity are given in Fig. 5. Shown in Fig. 5a, c are
the analytical results and shown in Fig. 5b, d are the
results from the Monte Carlo simulation. It can be seen
that the analytical results agree well with the Monte
Carlo simulation.

In order to see the influence of the τ1, the prob-
ability density function of p (q1) for different values
of τ1 is calculated. The results for the system with
time-delayed feedback control forces compared with
those without time-delayed feedback control force are

given in Fig. 6a–d. In these figures, the blue lines rep-
resent results of system with time-delayed feedback
control forces, and the red ones denote the results of
system without time-delayed control forces. It can be
seen that, with the increment of the value of τ1, the
number of peaks of PDFs of stationary response q1 of
system with time-delayed control force changes from
1 to 2, which implies the phenomenological bifurca-
tion occurs. Also, it can be seen that the PDFs of the
uncontrolled system remain unchanged, since the van-
ishing of controlled force term. In these figures, the
solid lines denote the theoretical results and the dis-
crete lines denote the Monte Carlo simulation. The
two results agree well with each other. The system
parameters are given as ε = 0.1, ω′

1 = 1.0, ω′
2 =

1.414, α′
11 = −3.0, α12 = 8.0, α′

21 = −3.0, α22 =
8.0, β1 = 1.0, β2 = 1.0, η11 = −3.0, η12 = 3.0, η21 =
−3.0, η22 = 3.0, τ2 = 4.0, 2D11 = 1.0, λ1 =
0.1, E[Y 2

1 ] = 10.0, 2D22 = 1.0, λ2 = 1.0, E[Y 2
2 ] = 10.
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Fig. 6 The influence of τ1 on the stationary marginal probability density of displacement q1. The solid lines in this figure are the results
from proposed method. The dotted lines in this figure are the results from Monte Carlo simulation

In primary internal resonance, i.e., ω1 = ω2=ω.
Introduce the combinationof angle variablesψ=θ1−θ2.
Thus, the averaged GFPK equation in this case has fol-
lowing form:

0 = − ∂

∂ I1

(
Ā1 (I1, I2, ψ) p

) − ∂

∂ I2

(
Ā2 (I1, I2, ψ) p

)

− ∂

∂ψ

(
Ā3 (I1, I2, ψ) p

)

+
1

2

∂2

∂ I 21

(
Ā1,1 (I1, I2, ψ) p

)

+
1

2

∂2

∂ I 22

(
Ā2,2 (I1, I2, ψ) p

)

+
1

2

∂2

∂ψ2

(
Ā3,3 (I1, I2, ψ) p

)

− 1

3!

∂3

∂ I 31

(
Ā1,1,1 (I1, I2, ψ) p

)

− 1

3!

∂3

∂ I 32

(
Ā2,2,2 (I1, I2, ψ) p

)

− 1

3!

∂3

∂ψ3

(
Ā3,3,3 (I1, I2, ψ) p

)

+
1

4!

∂4

∂ I 41

(
Ā1,1,1,1 (I1, I2, ψ) p

)

+
1

4!

∂4

∂ I 42

(
Ā2,2,2,2 (I1, I2, ψ) p

)

+
1

4!

∂4

∂ψ4

(
Ā3,3,3,3 (I1, I2, ψ) p

)

+
6

4!

∂4

∂ I 21 ∂ψ2

(
Ā1,1,3,3 (I1, I2, ψ) p

)

+
6

4!

∂4

∂ I 22 ∂ψ2

(
Ā2,2,3,3 (I1, I2, ψ) p

)
(41)

where p = p (I1, I2, ψ) and the coefficients for the
GFPK equation are
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Fig. 7 Stationary joint probability densities p (q1, p1) and p (q2, p2) of system in resonant case. a ,c analytical results and b, d results
from the Monte Carlo simulation

Ā1 = −ε2α11 I1 − 3

2
ε2α12ω1 I

2
1 − ε2β1

√
I1 I2 cosψ

+
ε2

(
2D11 + λ1E[Y 2

1 ]
)

2ω

Ā2 = −ε2α21 I2 − 3

2
ε2α22ω2 I

2
2 − ε2β2

√
I1 I2 cosψ

+
ε2

(
2D22 + λ2E[Y 2

2 ]
)

2ω

Ā3 = ε2

(
β1

2

√
I2
I1

+
β2

2

√
I1
I2

)
sinψ

(42)

Ā1,1 =
ε2

(
2D11 + λ1E[Y 2

1 ]
)

ω
I1

+
ε4λ1E[Y 4

1 ]

4ω2 ;

Ā2,2 =
ε2

(
2D22 + λ2E[Y 2

2 ]
)

ω
I2 +

ε4λ2E[Y 4
2 ]

4ω2 ;

Ā3,3 =
ε2

4ω

(
2D11 + λ1E[Y 2

1 ]

I1
+
2D22 + λ2E[Y 2

2 ]

I2

)

+
ε4

32ω2

(
λ1E[Y 4

1 ]

I 21
+

λ2E[Y 4
2 ]

I 22

)
(43)

otherwise : Ār1,r2 = 0

Ā1,1,1 =
3ε4

2

λ1E[Y 4
1 ]

ω2 I1; Ā2,2,2 =
3ε4

2

λ2E[Y 4
2 ]

ω2 I2;

Ā3,3,3 = 0 (44)

otherwise : Ār1,r2,r3 = 0,

Ā1,1,1,1 =
3ε4

2ω2 I
2
1 λ1E[Y

4
1 ];

Ā2,2,2,2 =
3ε4

2ω2 I
2
2 λ2E[Y

4
2 ];

Ā3,3,3,3 =
3ε4

32

λ1E[Y 4
1 ]

ω2 I 21
+

3

32

λ2E[Y 4
2 ]

ω2 I 22
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Fig. 8 Stationary marginal probability density functions of qi and pi in resonant case. The parameters are the same as those in Fig. 7.

Ā1,1,3,3 =
ε4

2
λ1E[Y

4
1 ]; Ā2,2,3,3 =

ε4

2
λ2E[Y

4
2 ] (45)

otherwise : Ār1,r2,r3,r4 = 0.
The reduced GFPK equation (41) here cannot be

solved theoretically. The finite difference method is
used here to solve the reduced averaged GFPK equa-
tion [32,33]. In our calculations, the finite difference
method is work out with following discrete steps:
�I1 = 0.1,�I2 = 0.1,�ψ = 2π/70.

After obtaining the stationary solution p (I1, I2, ψ),
the approximate stationary probability density of the
displacements and momenta of system (29) is of the
form

p (q1, p1, q2, p2) =
1

2π
p (I1, I2, ψ) . (46)

where ψ = θ1 − θ2, q1 = x1, p1 = ẋ1, q2 = x2, p2 =
ẋ2.The other statistics of the stationary response of sys-

tem (29) can then be obtained from p (I1, I2, ψ) or
p (q1, p1, q2, p2).

Figures 7 and 8 show some numerical results which
are calculated for parameters: α′

11 = −6.0, α12 =
3.0, β1 = 1.0, α′

21 = −6.0, α22 = 3.0, β2 = 1.0, η11 =
−3.0, η12 = 3.0, η21 = −3.0, η22 = 3.0, ω′

1 =
1.0, ω′

2 = 1.0, ε = 0.1, τ1=1.0, τ2 = 3.0, 2D11 =
1.5, 2D22 = 1.5, λ1 = 2.5, E[Y 2

1 ] = 0.2, λ2 =
2.5, E[Y 2

2 ] = 0.2. Shown in Fig. 7 are the stationary
joint probability density functions of system (29) in res-
onant case. Figure 7a ,c shows the results obtained by
proposed method. Figure 7b, d shows the results from
Monte Carlo simulation. Figure 8 shows the station-
ary marginal density functions of qi and pi which can
be obtained by integrating p (qi , pi ). In this figure, the
solid lines are the result obtained from the proposed
method while the dotted lines are those from Monte
Carlo simulation. It is seen from these figures that the
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Fig. 9 The influence of τ1 on the stationarymarginal probability
density of displacement q1. a τ1 = 0, τ2 = 2; b τ1 = 1, τ2 = 2; c
τ1 = 2, τ2 = 2; d τ1 = 3, τ2 = 2. The solid lines are the results

fromproposedmethod.Thedotted line are the results fromMonte
Carlo simulation. The other parameters are the same as those in
Fig. 7.

analytical results agree well with the Monte Carlo sim-
ulation. Moreover, in order to show the influence of
the time delay parameter τ1, the stationary probability
density functions of system (29) in resonant case are
shown in Fig. 9. It can be seen from the figure that the
time delay in the feedback control force can affect the
bifurcation of the system.

6 Conclusion

In the present paper, we consider a technique for pre-
dicting the quasi-integrable Hamiltonian system with
multi-time delays under combined Gaussian white
noise and Poisson white noise excitation, in which
the Gaussian white noise is independent of Poisson
white noise excitation. This technique can be viewed as
the generalization of the stochastic averaging method.

In order to get the response of the systems, two-
step approximations are applied. First of all, the time-
delayed system state variables are approximated by
using the variables without time delay. And the sys-
tem is transformed to the one with time delay as the
parameters. Then, the stochastic averaging method for
quasi-integrable Hamiltonian system with combined
Gaussian and Poisson white noise can be applied to
the transformed system. After the two-step approxima-
tion, the averaged SIDE and averaged GFPK equation
who governing the probability density of the system
response are obtained. The dimension of the original
system is reduced from 2n to lower dimension (nfor
non-resonant case and n+β for resonant case). In order
to show the application of the proposed method, two
examples are calculated, one for single degree oscilla-
tor, and the other for twodegree oscillator.After solving
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the reduced averaged GFPK equations, the stationary
probability density functions are derived by using the
perturbation technique or finite difference method. The
results fromMonteCarlo simulation are also calculated
to show the validity of the proposed method. In addi-
tion, the influences of the time delays on the response
of the system are also investigated.
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Appendix A

The coefficients of averaged GFPK equation for the
non-resonant case:

Ār1 (I) =
ε2

(2π)n

∫ 2π

0

⎛

⎝−
n∑

i=1

n∑

j=1

∂H

∂p j

∂ Ir1
∂pi

+
1

2

n∑

i=1

n∑

j=1

ng∑

k=1

σi,kσ j,k
∂2 Ir1

∂pi∂p j

⎞

⎠ dθ

+
u∑

k=2

εk
n p∑

l=1

λl E[Y k
l ]

(2π)n

∫ 2π

0
Ar ;k;ldθ, (47)

Ār1,r2 (I) =
ε2

(2π)n

∫ 2π

0⎛

⎝
n∑

i=1

n∑

j=1

ng∑

k=1

∂ Ir1
∂pi

∂ Ir2
∂p j

σi,kσ j,k

⎞

⎠dθ

+
u∑

k=2

εk
n p∑

l=1

λl E[Y k
l ]

(2π)n

∫ 2π

0
⎛

⎝
∑

k1+k2=k

Ar1;k1;l Ar2;k2;l

⎞

⎠ dθ, (48)

Ār1,r2,...,r j (I) =
u∑

k= j

εk
n p∑

l=1

λl E[Y k
l ]

(2π)n

∫ 2π

0
⎛

⎝
∑

k1+k2+···+k j=k
Ar1;k1;l Ar2;k2;l · · · Ar j ;k j ;l

⎞

⎠ dθ, (49)

whereAr ;k;l = Ar ;k;l (q, p) given in Ref. [23], I =
[I1, I2, . . . , In]T , θ = [θ1, θ2, . . . , θn]T and

∫ 2π
0 [·] dθ

=
∫ 2π
0

∫ 2π
0 · · · ∫ 2π

0 [·] dθ1dθ2 · · · dθn denotes the n-fold
integral.

Appendix B

The coefficients of averaged GFPK equation for reso-
nant case :

Ār1 (I,ψ) =
ε2

(2π)n−α

∫ 2π

0

⎛

⎝−
n∑

i, j=1

mi j
∂H

∂p j

∂ Ir1
∂pi

+
1

2

n∑

i, j=1

ng∑

k=1

σikσ jk
∂2 Ir1

∂pi∂p j

⎞

⎠ dθ1

+
u∑

k=1

n p∑

l=1

εkλl E[Y k
l ]

(2π)n−α

∫ 2π

0
Ar1;k;ldθ1

(50)

Ān+v1 (I,ψ) =
1

(2π)n−α

∫ 2π

0

⎡

⎣O
(
ε2

)

+ ε2

⎛

⎝−
n∑

i, j=1

mi j
∂H

∂p j

∂ψv1

∂pi

+
1

2

n∑

i, j=1

ng∑

k=1

σikσ jk
∂2ψv1

∂pi∂p j

⎞

⎠

⎤

⎦ dθ1

+
u∑

k=1

n p∑

l=1

εkλl E[Y k
l ]

(2π)n−α

∫ 2π

0
Cv1;k;ldθ1 (51)

Ār1,r2 (I,ψ)

=
ε2

(2π)n−α

∫ 2π

0

⎛

⎝
n∑

i, j=1

ng∑

k=1

∂ Ir1
∂pi

∂ Ir2
∂p j

σi,kσ j,k

⎞

⎠dθ1

+
u∑

k=2

n p∑

l=1

εkλl E[Y k
l ]

(2π)n−α

∫ 2π

0

⎛

⎝
∑

k1+k2=k

Ar1;k1;l Ar2;k2;l

⎞

⎠ dθ1

(52)

Ār1,n+v1 (I,ψ) =
ε2

(2π)n−α

∫ 2π

0⎛

⎝
n∑

i, j=1

ng∑

k=1

∂ Ir1
∂pi

∂ψv1

∂p j
σi,kσ j,k

⎞

⎠dθ1

+
u∑

k=2

n p∑

l=1

εkλl E[Y k
l ]

(2π)n−α

∫ 2π

0

⎛

⎝
∑

k1+k2=k

Ar1;k1;lCv1;k2;l

⎞

⎠ dθ1

(53)

Ān+v1,n+v2 (I,ψ) =
ε2

(2π)n−α

∫ 2π

0⎛

⎝
n∑

i, j=1

ng∑

k=1

σi,kσ j,k
∂ψv1

∂pi

∂ψv2

∂p j

⎞

⎠dθ1

+
u∑

k=2

n p∑

l=1

εkλl E[Y k
l ]

(2π)n−α

∫ 2π

0
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⎛

⎝
∑

k1+k2=k

Cv1;k1;lCv2;k2;l

⎞

⎠ dθ1 (54)

Ār1,r2,r3 (I,ψ) =
u∑

k=3

n p∑

l=1

εkλl E[Y k
l ]

(2π)n−α

∫ 2π

0
⎛

⎝
∑

k1+k2+k3=k

Ar1;k1;l Ar2;k2;l Ar3;k3;l

⎞

⎠ dθ1 (55)

Ār1,r2,n+v1 (I,ψ)

=
u∑

k=3

n p∑

l=1

εkλl E[Y k
l ]

(2π)n−α

∫ 2π

0
⎛

⎝
∑

k1+k2+k3=k

Ar1;k1;l Ar2;k2;lCv1;k3;l

⎞

⎠ dθ1 (56)

Ār1,n+v1,n+v2 (I,ψ)

=
u∑

k=3

n p∑

l=1

εkλl E[Y k
l ]

(2π)n−α

∫ 2π

0
⎛

⎝
∑

k1+k2+k3=k

Ar1;k1;lCv1;k2;lCv2;k3;l

⎞

⎠ dθ1 (57)

Ān+v1,n+v2,n+v3 (I,ψ)

=
u∑

k=3

n p∑

l=1

εkλl E[Y k
l ]

(2π)n−α

∫ 2π

0
⎛

⎝
∑

k1+k2+k3=k

Cv1;k1;lCv2;k2;lCv3;k3;l

⎞

⎠ dθ1 (58)

Ār1,...r j−s ,n+v1,...,n+vs (I,ψ)

=
u∑

k= j

n p∑

l=1

εkλl E[Y k
l ]

(2π)n−α

∫ 2π

0

⎛

⎝
∑

k1+k2+···+k j=k
Ar1;k1;l · · · Ars ;ks ;lCv1;ks+1;l · · ·Cv j−s ;k j ;l

⎞

⎠ dθ1

(59)

s = 0, . . . , j, j = 4, . . . , u, ri = 1, . . . , n; vi = 1, . . . , α.

where I = [I1, . . . , In]T , ψ = [ψ1, . . . , ψα]T and∫ 2π
0 [·]dθ1 =

∫ 2π
0

∫ 2π
0 · · · ∫ 2π

0 [·]dθ1dθ2 · · · dθα is the
n − α-fold integral notation. The terms Ar ;k;l =
Ar ;k;l (q, p) and Cr ;k;l = Cr ;k;l (q, p) are given in Ref.
[24].

Appendix C

Substituting this solution (27) to Eq. (25) and collecting
the terms of same order of ε, the equations that p0, p1
and p2 satisfy are

ε2 : 0 = − ∂

∂ I

(
Ā1 (I ) p0

)
+
1

2

∂

∂ I 2

(
Ā(1)
2 (I ) p0

)
(60)

ε3 : 0 = − ∂

∂ I

(
ε Ā1 (I ) p1

)
+
1

2

∂2

∂ I 2

(
ε Ā(1)

2 (I ) p1
)

(61)

ε4 : 0 = − ∂

∂ I

(
ε2 Ā1 (I ) p2

)
+
1

2

∂2

∂ I 2

(
ε2 Ā(2)

2 (I ) p2
)

− 1

3!

∂3

∂ I 3
(
Ā3 (I ) p0

)
+

1

4!

∂4

∂ I 4
(
Ā4 (I ) p0

)
(62)

...

where

Ā(1)
2 (I ) = ε2

2D + λE
[
Y 2

]

ω
I ;

Ā(2)
2 (I ) = ε4

λE
[
Y 4

]

4ω2 and

Ā2 (I ) = Ā(1)
2 (I ) + Ā(2)

2 (I )

One can get p0, p1, p2, . . . by solving Eqs. (60)–(62)
step by step. And, the solution (27) can be obtained.
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